F(0) of ATP synthase is a rotary proton channel. Obligatory coupling of proton translocation with rotation of c-subunit ring.
نویسندگان
چکیده
Coupling of proton flow and rotation in the F(0) motor of ATP synthase was investigated using the thermophilic Bacillus PS3 enzyme expressed functionally in Escherichia coli cells. Cysteine residues introduced into the N-terminal regions of subunits b and c of ATP synthase (bL2C/cS2C) were readily oxidized by treating the expressing cells with CuCl(2) to form predominantly a b-c cross-link with b-b and c-c cross-links being minor products. The oxidized ATP synthases, either in the inverted membrane vesicles or in the reconstituted proteoliposomes, showed drastically decreased proton pumping and ATPase activities compared with the reduced ones. Also, the oxidized F(0), either in the F(1)-stripped inverted vesicles or in the reconstituted F(0)-proteoliposomes, hardly mediated passive proton translocation through F(0). Careful analysis using single mutants (bL2C or cS2C) as controls indicated that the b-c cross-link was responsible for these defects. Thus, rotation of the c-oligomer ring relative to subunit b is obligatory for proton translocation; if there is no rotation of the c-ring there is no proton flow through F(0).
منابع مشابه
Essential arginine residue of the F(o)-a subunit in F(o)F(1)-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the F(o) proton channel.
In F(o)F(1) (F(o)F(1)-ATP synthase), proton translocation through F(o) drives rotation of the oligomer ring of F(o)-c subunits (c-ring) relative to F(o)-a. Previous reports have indicated that a conserved arginine residue in F(o)-a plays a critical role in the proton transfer at the F(o)-a/c-ring interface. Indeed, we show in the present study that thermophilic F(o)F(1s) with substitution of th...
متن کاملEssentials for ATP synthesis by F1F0 ATP synthases.
The majority of cellular energy in the form of adenosine triphosphate (ATP) is synthesized by the ubiquitous F(1)F(0) ATP synthase. Power for ATP synthesis derives from an electrochemical proton (or Na(+)) gradient, which drives rotation of membranous F(0) motor components. Efficient rotation not only requires a significant driving force (DeltamuH(+)), consisting of membrane potential (Deltapsi...
متن کاملStructural basis of proton translocation and force generation in mitochondrial ATP synthase
ATP synthases produce ATP by rotary catalysis, powered by the electrochemical proton gradient across the membrane. Understanding this fundamental process requires an atomic model of the proton pathway. We determined the structure of an intact mitochondrial ATP synthase dimer by electron cryo-microscopy at near-atomic resolution. Charged and polar residues of the a-subunit stator define two aque...
متن کاملStructure and conformational states of the bovine mitochondrial ATP synthase by cryo-EM
Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single part...
متن کاملMonitoring transient elastic energy storage within the rotary motors of single FoF1-ATP synthase by DCO-ALEX FRET
The enzyme FoF1-ATP synthase provides the 'chemical energy currency' adenosine triphosphate (ATP) for living cells. Catalysis is driven by mechanochemical coupling of subunit rotation within the enzyme with conformational changes in the three ATP binding sites. Proton translocation through the membrane-bound Fo part of ATP synthase powers a 10step rotary motion of the ring of c subunits. This r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 15 شماره
صفحات -
تاریخ انتشار 2002